3,770 research outputs found

    Respiration-Locking of Olfactory Receptor and Projection Neurons in the Mouse Olfactory Bulb and Its Modulation by Brain State

    Get PDF
    For sensory systems of the brain, the dynamics of an animal’s own sampling behavior has a direct consequence on ensuing computations. This is particularly the case for mammalian olfaction, where a rhythmic flow of air over the nasal epithelium entrains activity in olfactory system neurons in a phenomenon known as sniff-locking. Parameters of sniffing can, however, change drastically with brain states. Coupled to the fact that different observation methods have different kinetics, consensus on the sniff-locking properties of neurons is lacking. To address this, we investigated the sniff-related activity of olfactory sensory neurons (OSNs), as well as the principal neurons of the olfactory bulb (OB), using 2-photon calcium imaging and intracellular whole-cell patch-clamp recordings in vivo, both in anesthetized and awake mice. Our results indicate that OSNs and OB output neurons lock robustly to the sniff rhythm, but with a slight temporal shift between behavioral states. We also observed a slight delay between methods. Further, the divergent sniff-locking by tufted cells (TCs) and mitral cells (MCs) in the absence of odor can be used to determine the cell type reliably using a simple linear classifier. Using this classification on datasets where morphological identification is unavailable, we find that MCs use a wider range of temporal shifts to encode odors than previously thought, while TCs have a constrained timing of activation due to an early-onset hyperpolarization. We conclude that the sniff rhythm serves as a fundamental rhythm but its impact on odor encoding depends on cell type, and this difference is accentuated in awake mice

    Cellular identity of cerebellar memory.

    Get PDF
    The cerebellum is essential for some forms of motor learning and storage of motor memories. The simple organization of the cerebellum provides special opportunities to analyse mechanisms underlying learning and memory in a real neural network. A dominant hypothesis of cerebellar function is one based on suggestions by Marr and Albus, where Purkinje cell responses to parallel fibre inputs are modified under climbing fibre control. A candidate cellular mechanism is a long-term depression of parallel fibre-Purkinje cell synapses (pf-PC LTD) seen, in vitro, after conjunctive activation of parallel and climbing fibres. The associative and persistent nature of pf- PC LTD suggests that it may underlie behavioural forms of cerebellum-dependent learning. Activation of the metabotropic glutamate receptor type 1 (mGlui receptor) is critical for the induction of pf-PC LTD. If pf-PC LTD underlies learning, then blocking this receptor should lead to impairment of cerebellum-dependent learning. The studies described here test the role of the mGlui receptor in one form of cerebellum- dependent associative learning. Chapters 2 and 3 describe slice electrophysiological experiments that assess the mGlul antagonists CPCCOEt, YM-298198 and JNJ16259685. CPCCOEt was found to have a non-specific action, while YM-298198 and JNJ16259685 were found to be very potent and highly specific. Chapter 4 describes the effects of cerebellar infusions of JNJ 16259685 on classical conditioning of the rabbit nictitating membrane response and reveals that conditioning was not impaired. The result suggests there could be dissociation between pf-PC LTD and cerebellar learning. It is known that pf-PC LTD in vitro may not be a single phenomenon since it can be induced with a range of protocols that can differ significantly from the normal physiology. Thus, there may be a form of pf-PC LTD in vivo that is relatively independent of mGlui receptor function. Alternatively, behavioural learning may depend upon plasticities involving other neuronal types in the cerebellar cortex

    Dispersive diffusion controlled distance dependent recombination in amorphous semiconductors

    Full text link
    The photoluminescence in amorphous semiconductors decays according to power law t−deltat^{-delta} at long times. The photoluminescence is controlled by dispersive transport of electrons. The latter is usually characterized by the power alphaalpha of the transient current observed in the time-of-flight experiments. Geminate recombination occurs by radiative tunneling which has a distance dependence. In this paper, we formulate ways to calculate reaction rates and survival probabilities in the case carriers execute dispersive diffusion with long-range reactivity. The method is applied to obtain tunneling recombination rates under dispersive diffusion. The theoretical condition of observing the relation delta=alpha/2+1delta = alpha/2 + 1 is obtained and theoretical recombination rates are compared to the kinetics of observed photoluminescence decay in the whole time range measured.Comment: To appear in Journal of Chemical Physic

    Robust multi-fidelity design of a micro re-entry unmanned space vehicle

    Get PDF
    This article addresses the preliminary robust design of a small-scale re-entry unmanned space vehicle by means of a hybrid optimization technique. The approach, developed in this article, closely couples an evolutionary multi-objective algorithm with a direct transcription method for optimal control problems. The evolutionary part handles the shape parameters of the vehicle and the uncertain objective functions, while the direct transcription method generates an optimal control profile for the re-entry trajectory. Uncertainties on the aerodynamic forces and characteristics of the thermal protection material are incorporated into the vehicle model, and a Monte-Carlo sampling procedure is used to compute relevant statistical characteristics of the maximum heat flux and internal temperature. Then, the hybrid algorithm searches for geometries that minimize the mean value of the maximum heat flux, the mean value of the maximum internal temperature, and the weighted sum of their variance: the evolutionary part handles the shape parameters of the vehicle and the uncertain functions, while the direct transcription method generates the optimal control profile for the re-entry trajectory of each individual of the population. During the optimization process, artificial neural networks are utilized to approximate the aerodynamic forces required by the optimal control solver. The artificial neural networks are trained and updated by means of a multi-fidelity approach: initially a low-fidelity analytical model, fitted on a waverider type of vehicle, is used to train the neural networks, and through the evolution a mix of analytical and computational fluid dynamic, high-fidelity computations are used to update it. The data obtained by the high-fidelity model progressively become the main source of updates for the neural networks till, near the end of the optimization process, the influence of the data obtained by the analytical model is practically nullified. On the basis of preliminary results, the adopted technique is able to predict achievable performance of the small spacecraft and the requirements in terms of thermal protection materials

    Disorder Induced Ferromagnetism in CaRuO3

    Full text link
    The magnetic ground state of perovskite structure CaRuO3 has been enigmatic for decades. Here we show that paramagnetic CaRuO3 can be made ferromagnetic by very small amounts of partial substitution of Ru by Ti. Magnetic hysteresis loops are observed at 5 K for as little as 2% Ti substitution. Ti is non-magnetic and isovalent with Ru, indicating that the primary effect of the substitution is the disruption of the magnetic ground state of CaRuO3 through disorder. The data suggest that CaRuO3 is poised at a critical point between ferromagnetic and paramagnetic ground states

    Super- and CP-symmetric QCD in Higher Dimensions

    Get PDF
    An extremely precise global symmetry is necessary in the Peccei--Quinn solution to the strong CP problem. Such symmetry arises when colored chiral fermions are localized in an internal space. We present a supersymmetric model that incorporates the above mechanism. Extra colored chiral multiplets around the supersymmetry-breaking scale are a generic prediction of the supersymetric model.Comment: 10 page

    Dispersive photoluminescence decay by geminate recombination in amorphous semiconductors

    Full text link
    The photoluminescence decay in amorphous semiconductors is described by power law t−deltat^{-delta} at long times. The power-law decay of photoluminescence at long times is commonly observed but recent experiments have revealed that the exponent, deltasim1.2−1.3delta sim 1.2-1.3, is smaller than the value 1.5 predicted from a geminate recombination model assuming normal diffusion. Transient currents observed in the time-of-flight experiments are highly dispersive characterized by the disorder parameter alphaalpha smaller than 1. Geminate recombination rate should be influenced by the dispersive transport of charge carriers. In this paper we derive the simple relation, delta=1+alpha/2delta = 1+ alpha/2 . Not only the exponent but also the amplitude of the decay calculated in this study is consistent with measured photoluminescence in a-Si:H.Comment: 18pages. Submitted for the publication in Phys. Rev.
    • …
    corecore